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ABSTRACT 

The Hamiltonian of the massive Thirring model is explicitly diagonalized by 

formulating a Bethe ansatz for the eigenstates. The physical states are described 

by many-body wave functions representing the vacuum as a filled Fermi-Dirac sea 

and particle states as excitations built upon it. The spectrum of states is 

determined by imposing periodic boundary conditions on the wave functions. 

Energies are calculated by reducing the periodic boundary conditions to linear 

integral equations. For fermion-antifermion bound states the Dashen-Hasslacher- 

Neveu spectrum is obtained. It is shown that the solution to the massive Thirring 

model can be understood as the critical limit of Baxter’s solution of the eight- 

vertex model. 

- 
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I. INTRODUCTION’ 

The massive Thirring model is the theory of a self-coupled fermion field I$ in 

two dimensions described by the Lagrangian 

(1.1) 

where j ~ = YdT,yp . The massless model’ (m. = 0) has been extensively 

analyzed. It is exactly soluble, and possesses a conserved axial vector current j p5 

in addition to the conserved vector current. This is an important ingredient in the 

construction of the solution. In addition, the massless model is scale invariant with 

anomalous dimensions. Thus, the bare mass appearing in Eq. 1.1 is related to the 

physical mass by some power of a cutoff. 

The massive Thirring model does not have a conserved axial current and 

cannot be solved by the same techniques used in the solution of the massless model. 

Recently, however, considerable evidence has gathered to support the belief that 

the massive model is also exactly soluble. This evidence comes from two major 

approaches to the theory. These are the equivalence of the massive Thirring model 

to the quantized sine-Gordon equation,3 and the equivalence of a lattice version of 

the model to the XYZ Heisenberg spin chain. 4-6 

The sine-Gordon theory is exactly integrable at the classical leveL7 Within 

the classical theory it is possible to construct an infinite family of conserved 

currents. 8 It has been shown that these currents can be consistently defined in the 

quantum theory.9 They have been used to construct the exact S-matrix for the 

theory. 10 In the context of a simpler theory, the non-linear Schrodinger equation, 

it has been argued that the existence of such a family of conserved currents in the 

quantum theory is intimately related to the success of a Bethe ansatz as a means of 
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diagonalizing the Hamiltonian. II In addition, Dashen, Hasslacher, and Neveu” 

(DHN) have used semiclassical methods to compute the mass spectrum of the sine- 

Gordon theory, and these results are found to be exact. 

The second approach suggesting that the massive Thirring model is exactly 

soluble is the study of the XYZ spin chain. 4-6 This is a one-dimensional model 

described by the Hamiltonian 

A?= -s 1 [Jx+;+l + Jy#+l + Jp;1{+l] . (;.2) 
n 

where the & are Pauli matrices. In a pioneering work, Baxter4 succeeded in 

computing the ground state energy of the system. Johnson, Krinsky, and McCoy’ 

then computed the exact excitation spectrum. Luther6 pointed out that via a 

Jordan Wigner transformation, the XYZ Hamiltonian could be regarded as a lattice 

version of the massive Thirring model. He showed that in an appropriate limit, the 

excitation spectrum computed by Johnson, Krinsky, and McCoy (JKM) reduced to 

the DHN spectrum. The elegant methods of Baxter and Johnson, Krinsky, and 

McCoy can be described as a generalization of Bethels ansatz. 

Bethe’s ansatz was first usedI to solve the isotropic Heisenberg chain 

(Jx = Jy = Ja). Bethe found that the eigenstates of the Hamiltonian could be 

described in terms of interacting spin waves. The only effect of the interaction 

was to cause the spin waves to scatter elastically, with a nontrivial phase shift. He 

wrote down exact eigenstates with an arbitrary number of spin waves labeled by 

momenta k.. I To construct the ground state, it was necessary to fill all negative 

energy modes, 14 using periodic boundary conditions to determine the density of 

states. Since then, the Bethe ansatz has been used in various forms to solve the 

quantum nonlinear Schrodinger equation,15 several ice models,16 and the XYZ spin 

chainI (Jx = Jy= Jz ). 
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In section II of this paper, we will demonstrate the diagonalization of the 

massive Thirring model Hamiltonian via a Bethe ansatz. This will be accomplished 

on the “unfilled” Dirac sea. In section III, we discuss implications of the periodic 

boundary conditions for all states, and in particular, excited states. The spectrum 

of the massive Thirring model will be computed in section IV. Finally, in section V, 

we discuss the relationship between our methods and the techniques of Baxter and 

Johnson, Krinsky, and McCoy in their analysis of the lattice theory. 

II. DIAGONALIZATION OF THE HAMILTONIAN 

The diagonalization of the Hamiltonian will be accomplished in an unphysical 

Hilbert space built on a reference state 1 0 >. This state is defined by 

~,(x)/o>=$2(x)10>=o. Of course, this Hilbert space is very far from the 

physical one. Even in free field theory, it has an unbounded negative energy 

spectrum. We will see that this feature persists in the interacting theory. The 

physical vacuum is formally constructed from the reference state by filling all 

negative energy modes, i.e. filling the Dirac sea. It is in this phase of our 

investigation that we deal with the non-trivial renormalization properties known’ 

to be present in the Thirring model (mass renormalization and anomalous 

dimensions for operators). The spectrum of the Hamiltonian on the filled Dirac sea 

(true vacuum) is profoundly different from the spectrum in the unphysical Hilbert 

space, unlike the free field theory case where the only spectral effect is to 

eliminate negative energy states and replace them by antiparticle states. By 

taking careful account of the nature of the interacting Dirac sea, we will be able to 

compute the physical spectrum of H. 

We choose a basis in which y5 is diagonal. The Hamiltonian is 

H = j-dx 
ta ta t 

-i(JI,7g@, -;lr,z$,) + mo(QI Q2 + JI 
I 

. (2.1) 
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We have actually dropped a term proportional to the operator 

N = J- dx$‘$ 

This operator commutes with H, and can be used to classify superselection sectors 

of the theory. Motivated by the character of Bethe’s ansatz, we want to find 

modes which are preserved by the interaction, suffering only a phase shift. We will 

accomplish this in two steps. 

Consider first the free Hamiltonian (go = 0). We introduce the momentum 

space operators 

a. Ik =J se -ikx 4$(x) (2.2) 

and find 

Ho = i dk alkaIk - azkazk (2.3) 

Since H o is quadratic in the a’s, we can diagonalize it by a canonical 

transformation, 

A Ik = cosf3kalk+sin0 a k 2k 

A 2k = -sin Bk alk +cos 6 a k 2k 

If tan 20k = (ma/k), the Hamiltonian is diagonal in the A’s, becoming 

(2.4) 

- 
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Ho = j- dk Ek A:,A,k - A;,A,, 

Ek =m 

From Equations (2.2), (2.4) and the definition of IO>it follows that 

AlkjO’ = A2kjO>= o 

(2.5) 

(2.6) 

Then, from Eq. (2.5), we see that the spectrum of Ho in a Hilbert space built on IO> 

has two types of excitations. There are “1” particles with a dispersion relation 

E Ik=+ k 2 +mo, 2 and “2” particles with Ezk = - /Pq? Eigenstates are 

constructed by applying creation operators to the state IO> 

Ikl, . . . k,; pI, . . . pm> = fI” At Iki jjl ‘+2pj 1” ’ i=l 

The energies of “1” and “2” excitations are positive and negative, respectively, 

H /kl, . . . k,; pI, . . . p > = m 1 Eki - ; Ep,) Ikl, .-. k,; PI’ a.. pm> . (2.7) 
i I 

The full Hamiltonian is diagonalized by a generalization of this procedure. 

The remaining step is to include phase shifts in the wavefunctions. A two-body 

phase shift appears for each pair of occupied modes in the eigenstate. It is 

simplest to demonstrate the procedure for the sector N = 2. The construction for 

any N is presented in the Appendix. Consider a state with two “I” particles. In 

free field theory, we could write it as 
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jklk2 > = A;, 
0 1 ‘:k, 1 O> E f dx,dx2 x(xi, ki) Yt(xI, kiNt(x2, k2) IO> 

Y(x, k) = cos Ok q,(x) + sin Ok Q,(x) (2.8) 

where x = exp Xk x + k2x2) for free fermions. 1 1 We find that by including a factor 

(1 + iXe(xl - x2)) in Eq. (2.8) (where E(X) is a step function), an eigenstate of H is 

obtained. X is determined in the course of the calculation. We proceed by applying 

Ho to I klk2 > and commuting $ils to the right until they annihilate I O>. The 

derivatives of the kinetic Hamiltonian are then integrated by parts to act on 

x=e 
iklXl eik2x2 (, 

+ i xdx,-x2)). We have 

Ho Iklk2> = 1 dx,dx2 xkos e1 + m,x sin 8 k 
1 
} JI 

t 
, $1 

x)sin 8, - mox cos e,} 6:(x,) 1 Y t (X2, k2) + (xi,kl - X2,k2) 
I 

IO> . (2.9) 

If A = 0, we have (-i-&) = kix. Then, using tan 2ek = m,/k, it is easy to show 
I 

k cos Ok + mosin Ok = Ek cos ak 

k sin Ok - mOcos Ok = -Ek sin Ok (2.10) 

These substitutions in (2.9) yield (2.7). Of course, X b 0, and we have an additional 

contribution. By taking &(x)E(x) = 0, we have 

t-i&- 
1 

k, +2A6(x1 -x2) (2.11) 

The first term in (2.11) can be substituted into (2.9) to get the free field result 

again. The second term gives 
- 
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1 R > = 4 X / &x(x ,x) sin (0 1 + 0 ,)I~:(x)J~~(x) 1 O> . (2.12a) 

By applying Hf = H - Ho to 1 k ,k2 > , we obtain 

IR’> = -2goj dxx(x,x)sin (0, - 13 2)$:(x)$~(x) IO> . (2.12b) 

Taking 

sin ‘t3 

‘(kl, k2) = ‘go sin 
1 kl -e k2) 

c 

e 
kl 

+9 
k2) 

(2.13) 

we see that 1 R > + 1 R’z = 0, and hence 

H Iklk2 >= (Ekl + Ek2) Ikf, k2> (2.14) 

completing the demonstration. 

In deriving Eq. (2.14), the symmetric choice G(x)E(x) = 0 has been made. 

Since H and the number operator N commute, we might regard the diagonalization 

problem as a many-body Dirac equation for x. The interaction induces a delta 

function potential in the eigenvalue problem for x, and by integrating across the 

boundary x1 = x2, we obtain the result that the scattering introduces a phase shift. 

Eq. (2.13) is that phase shift, since the relative phase of x between the regions 

x1 > x2 and x1 < x2 is just 

1 +ih 
m =e 

i dki,k2) 

(2.15a) 
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It is possible to modify all free Hamiltonian eigenstates in this manner (see 

Appendix A) obtaining new states IkI...k,, pl...p,> with 

H [kl-k,, P~...P,’ = ( CEk, - C Ep.) IkI...k,, pl...p,> 
1 I 

P Ikl...k,, pl...pm> = ( Ck. + C pj) IkI...k,; pI...p, > 1 (2.16) 

where P is the momentum operator of the theory. It is important to realize that 

the k’s and p’s no longer have the simple meaning they had for free field theory. 

Including a function of (xl - x2) in Eq. (2.8) destroys the relationship of k in AL to k 

labeling a state. The k’s in the state are now to be regarded only as labels. 1 klk2> 

contains Fock space components with arbitrarily high momentum. 

For free field theory, the physical vacuum is the state with all “2” particle 

modes filled. By quantizing the theory in a box of length L and imposing periodic 

boundary conditions, these modes become denumerable. We have 

In> = ; Aikn IO>, kn = y (2.17) 

where n = integer. The spectrum of states in this vacuum is manifestly positive. It 

consists of “1” particles with Elk = m, and holes with energy 

E hole k = ++@-zy, (all energies relative to the vacuum). We shall fill the Dirac 

sea in the same manner for the interacting theory. ,411 “2” modes are filled in the 

physical vacuum. It is more difficult to do this for the full theory. Periodic 

boundary conditions (PBC’s), trivial for free field theory, are an infinite set of 

coupled transcendental equations when go f 0. Fortunately, similar problems occur 

in other models solved by Bethels ansatz and have been successfully treated by 



~-IO- FERMILAB-Pub-78/84-THY 

converting the PBC’s to linear integral equations. 5,15,16,17 We will analyze the 

periodic boundary conditions for the massive Thirring model in Section III. It is the 

non-trivial nature of the PBC’s that prevents us from concluding that Eq. (2.16) 

implies the spectrum of the interacting theory is identical to the free theory. 

It is convenient to take advantage of the Lorentz invariance of the 

Hamiltonian by introducing rapidity variables. For a “1” mode, let 

tanh 8 = k/E (2.18) 

In terms of 6, we have 

$(Bl, 9,) = + 2 tan-’ Icot u tanh B(;,l -3,) } (2.15bl 

where we have set cot lo = -&go for reasons which will become apparent. The 

spectrum is most elegantly presented in terms of the coupling p . Note that 

0 < u < n covers the range --<go cm. Free field theory is u = TI /2. For II < n/2 

Igo< O), particles and holes repel. For lo > s/11/2 Igo > 01, and particles and holes 

attract. Here we find bound states. There is an alternative form for the phase 

shift, emphasizing the naturalness of the coupling U. It is 

I$(@ = -iln 1 - $&$-$j 1 (2.15~) 

The precise branch structure of this will be examined in detail later. 

Finally, we note that 8 + in - 8 takes a “1” particle to a “2” particle of the 

same momentum. We have 

- 
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E = mocoshB + m,cosh(in-13) = -m,coshB 

P = mosinh5 -f m,sinh(in-6) = tmosinh8 . 

This substitution can be systematically applied to all results, in particular the phase 

shift. We may obtain phase shifts between “1” and “2” particles, or two “2” 

particles in this manner. With the introduction of complex rapidity, the filled 

Dirac sea may be considered as occupying the line ImB = II in the rapidity plane 

(see Fig. 1). The notion of complex rapidity will be extremely useful in 

developing the structure of the theory. In terms of rapidities, we can construct a 

general eigenstate of the Hamiltonian. It is 18, . ..Bn> where real B’s correspond to 

“1” particles and Im 6 = i 1~ corresponds to “2” particles. The general wavefunction 

is 

x k,, . . . x,) = e 
imoCxisinh Bi 

I<iZj<n ( 
1 + iT43i, Bj) dxi - xj) (2.19) 

- - 

and the eigenvalue equation is 

H IB,...S,> = (2.20) 

- 
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III. PERIODIC BOUNDARY CONDITIONS 

In order to define the process of filling the Dirac sea, we put the theory in a 

box of length L and impose periodic boundary conditions (PBC’s) on the states. For 

free field theory (u= n/2), this simply restricts allowed momenta to integral 

multiples of (2 n/L). When uf n/2, the phase shifts among modes are non-vanishing, 

and the imposition of PBC’s is more involved. 

We demand that x(x I,...,xn) be periodic in each argument xi. This gives the 

boundary condition 

X(Xi = 0) = X(Xi = L) (3.1) 

Comparing x at the boundaries of the xi variable and using Eq. (A.3), we find 

e 
im,Lsinh Bi 

= e 
-1: 4dBi-Bj) . (3.2) 

This set of equations must be satisfied for I@ l,...,Bn> to be a physically admissible 

state. Taking the logarithm of Eq. (3.2), we find 

mosinh fii = (3.3) 

where $6) is given in Eq. (2.15b). The ni in Eq. (3.3) are integers specifying the 

branch of the logarithm of Eq. (3.2) to be taken. We always choose 

-n/2 < tan-lx < d/2 for the phase shifts in (3.3). 

In free field theory, the phase shift $ = 0, so the PBC’s require ki = 2sni/L. 

The vacuum is the state with no holes, that is to say ni - ni-1 = I. As p varies from 

n/2, the position of each 6 shifts, but the ground state distribution remains without 
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holes. Figure 1 represents a section of the vacuum distribution of modes for free 

field theory and for u > s/2 and ;I < 7 /2. In Section IV, we shall show how to get 

exact information about the spectral properties of the theory from the PBC’s. 

We can now discuss excitations built upon the vacuum. Since a term in H 

proportional to N, the number of filled modes, was dropped in Eq. (2.1), we will 

always remain in the neutral sector. Thus, an excitation will be constructed by 

removing a certain number of modes from the filled vacuum line ImB =A and 

placing them in configurations which satisfy the PBC’s. 

The simplest excitation possible is obtained by removing a mode from 

b = in+a, and placing it at B =a:, where o. and CX~ are real. In free field theory, 

this particle-hole pair is a state with a fermion and an antifermion. The 

antifermion (hole) has energy -m. cash (irr + ao) = +mo cash a,, and the fermion 

has energy +mo cash CI~. For p < TI /2, such a state persists, but for I-I > TI /2, only a 

particle hole pair with a0 =c( is allowed. To see this, we consider first a simpler 

problem. Given a filled mode at 8 = 0, we can ask which modes along the line 

Im 6 = TI can be filled while satisfying the PBC’s. For a state with a mode at 

8 = i TI + cxo (a0 real) Eq. (3.3) becomes 

moL sinh a0 = 2nn + 2 tan -I cot u coth Yza, (3.4) 

When I.I c n/2, cot u > 0, and for any n, we have a solution to Eq. (3.4), as shown in 

Fig. 2a. For n = 0, we have, in fact, 2 solutions. One is positive and one is 

negative. The discontinuity introduced in the PBC’s by the presence of a particle 

at a = 0 has provided an extra place on the Im a = in line for a mode. 

For p > II /2, cot 11 < 0, and, for n = 0, Eq. (3.4) has no solutions. This is 

depicted in Fig. 2b. Of course, solutions exist for In 1 > 0. As p increases past 

n/2, we go from having two solutions to the PBC’s with n = 0 to having none. In 
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this discussion, we have ignored the effects of other particles along the line 

Im CL = in. These will be discussed shortly. 

There are other possible excitations in the interacting theory. The modes can 

be restricted, without loss of generality, to the strip - pi < Im 4 < TI . In general, we 

must be careful to place modes along the lines Im 8 = 0 or TI to insure that 

k = m. sinh a is real. An imaginary k introduces the possibility of an exponentially 

growing wavefunction in some direction. In the interacting theory, it turns out that 

very special configurations of modes off the lines Im 6 = 0 or II are permitted. 

They are called n-strings.5 Although they have imaginary momentum labels, the 

coefficient of the exponentially growing term in the wavefunction vanishes. They 

will be found to represent bound states for a certain range of the coupling u, and 

unbound pairs for another range. 

For simplicity, we will first construct an n-string in the absence of the Dirac 

sea. Consider a state with n modes { B i} filled. All 8. have the same real part, as. 

The wavefunction x contains plane wave factors e 
im’,xIsinh Bi 

. If O<Im 83’s, 

then Im sinh Bi > 0, so as xi+ - o9 the wavefunction will blow up unless we can 

arrange for the relevant coefficients to vanish. In the limit xi + -m, we can replace 

c (xi - xj) by C-1) , and require 

n 
( 

1 -iUBi,B j) = 0 
j 1 

(3.5) 

From this it is found that the B’s must be distributed symmetrically about the real 

axis (so that the total momentum of the n-string is real), and that the factors in 

(3.5) connecting adjacent 8’s must vanish. This leads to the requirement 

I + cot p tan y2 A= 0, or 

- 
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A= 2(n-1~) (3.6) 

where A is the spacing between adjacent 6 ‘s. Thus, an n-string consists of n B’s 

spaced 2( 71 -p ) apart in the imaginary direction, all with the same real part. This 

is shown in Fig. 3. If n such points cannot be fit within -TI < Im B 5 TI, the n- 

string is not allowed by the PBC’s. An n-string may exist for n-2 
( 1 

--n<!.l<n. n-l 

In order to discuss the excitations available for a given value of the coupling 

parameter p, we divide the domain (0, n) into intervals Ir where r is an integer. 

N (I Ir will denote a value in the range (5) n < p < (s) n. Thus, for 

p E Ir, n strings for n’ r + 2 are permitted. We shall see, however, that in the 

presence of the Dirac sea, the character of the r + 2 and r + I string is different 

from the character of the n (r string. For p E Ir, the largest two n-strings 

(namely n = r + 2, r + I) require (n - 2) holes at CL~ + in while al1 other n-strings 

(namely n 2’) require n holes at as + in. An r + 2 (or r + 1) string state has 3 free 

parameters. They are cas, the location of the string, and the location of the 2 holes 

in the Dirac sea which were not forced to be at as + ii7. An n-string for n < r has 

only 1 free parameter, namely as, since all n holes are in this case required to be at 

as+hr. We will find that the two longest string states correspond to an unbound 

fermion-antifermion pair, while the smaller strings correspond to bound states. 

The restriction on the placement of holes in n-string states described above 

will now be shown to follow directly from the PBC’s. The first step in this 

demonstration is to compute the phase shift suffered by a vacuum particle labeled 

by 6 = in + a (cr real) due to an n-string at us. This will be called @“(CL, as). We 

define 

F”(a) = 2 tan -‘{cot y tanh i 8) (3.6’) 
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so that F2(@) is the phase shift. As always, we choose the principle branch for 

-1 tan . The sum of phase shifts is computed using the form of I$@) given in Eq. 

(2.15~). When we add the phase shifts due to each mode in the n-string, the sum 

telescopes,with the result (for n > 1) 

9, “(a, as) = Fr,+,(in + CL - 9) + F,-l(irr+a - as) - AE(CI -a,) In odd) 

0 n(a,a s) = F,+,(a - as) + Fnmlb -a,) - AE (a - as) (n even) . (3.7) 

Here the A’s are the constant multiples of TI needed to match the branches of the 

left and right-hand sides of the equations. They can be determined by examining 

the equations in the limit .Re a+ t -. From Eq. (2.15b), we see 

@“(a, as) + n( ?I- 2~) in this limit. By computing the limits of the Fn, we find for 

I.I c Ir, A = (n - 2)s for the r + 2 and r + 1 strings, A = DTI for even n strings with 

n 5 r, and A = (n-2) TI for odd n-strings with n( r. This specifies the phase shifts to 

be used in the PBC’s. 

As we saw from the analysis of the l-string (Eq. 3.4), the discontinuity of 

@,(a,, as) at a o = a, is of central importance in determining the proper 

placement of modes along the irr line. This discontinuity is readily computed from 

Eq. (3.7) and the knowledge of A. For even strings, the F’s are continuous, and the 

sole source of the discontinuity is the E(a) in Eq. (3.7). Thus, the discontinuity is 

-2 IT(~ - 2) for the longest even n-string. For the smaller even n-strings, the jump is 

-2~“. Odd n-strings have an additional discontinuity due to the fact that the F’s 

are discontinuous (containing coth 63 -a J) with total discontinuity 2n. For the 

longest odd n-string, the discontinuities of Fn+l and FnmI cancel, leaving a total 

discontinuity of -2 n(n - 2). For the others, the discontinuities add, leaving a total 
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discontinuity -2an. Thus, for lo c Ir, the n = r + 2 and r + I strings have a 

discontinuity in Qn of -2n(n - 2), and the others have a discontinuity of -2s”. This 

is also valid for the 1 string. 

We can now analyze the PBC’s for vacuum modes in the presence of an n- 

string. First, consider the filled Dirac sea. This has no holes (ni - ni-1 = l), and the 

rapidities of the vacuum modes at Bi = i TI + c1 i satisfy 

2nn. 
m. sinh ai = 2 L + 6 I: $dai - aj) . 

1 
(3.8a) 

Suppose we put an n-string between am and am+, (e.g. am < os < a m+l, see Fig. 

4). The rapidity gap between these modes is 0(1/L). The new PBC’s are 

m. sinh zi = (3.8b) 

We can construct an approximate solution to these equations by setting ai =ai, 

because the extra term Qn is a sum of a finite number of terms each 0(1/L). We 

must, however, change iii by introducing an appropriate number of holes, i.e., 

” m+l-“m > 1 (where a, < a 
Sea 

m+l). This can be seen by subtracting the i = m 

Eq. (3.8b) from the i = m + 1 equation, and using Eq. (3.8a) this gives 

mosinh an+l - mosinh g, = F(firn+, -Em) + 

+ i ( 0 n(am+I, as) - Qn(am, asI ) 

% (r~~+~ -rim) = F 6m+l - iim) + i Disc (0,) . 

Since the vacuum distribution has nm+l - n 
-m 

= 1, we conclude 
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ii m+l -ii, = - &Disc(Qn)+l (3.9) 

Eq. (3.9) leads to the hole counting described above. For p c Ir, the (r + 2)- and 

(r + I)-strings have discontinuities -2a(n - 2), or, according to Eq. (3.9), (n - 2) holes 

(n n+l - nn = 1 means no holes). The n strings with n ‘r have discontinuities of 

-2st-1, or, according to Eq. (3.9), require n holes at in +a s for their construction. 

In particular, for 11 c IO (i.e. 0 < i.~ < n/2), a I string has (-1) holes. This is 

precisely the situation found in Eq. (3.4), namely, there were two solutions to the 

periodic boundary condition equation for the vacuum distribution over the I string. 

As p increases towards n/2, these solutions approach one another. When p is 

slightly greater than n/2 (u c I,), we know a 3-string is allowed. It has modes at 

Ima=OandIma =ti(n-2c)where u=(a/2)+c. We can add 2ni to the mode at 

-i(r - 2 c) bringing it to i( TI + 2~). In this way, the two new modes might be thought 

of as the two solutions to the vacuum PBC’s which were approaching each other for 

u <n /2. Instead of colliding (and causing I al...a nl”’ > to vanish) they move aside 

(see Fig. 5) causing the 1 string with -1 holes (part of an unbound fermion- 

antifermion state) to evolve into a 3-string with 1 hole (part of the unbound 

fermion-antifermion state in the region 11). A similar picture may be constructed 

for the evolution of this fermion-antifermion state into the region 12, and so on. 

One can also be constructed for even strings. 
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IV. THE SPECTRUM 

Now that we understand the character of the states allowed by the periodic 

boundary conditions, we can use the PBC’s to compute energies and momenta. 

First, consider the ground state. As L+ m, the modes along ImB = r approach a 

continuous distribution. Expecting Aai f ai - ai- to be 0(1/L), we define 

p(a) = L+a 

If the modes filled for the vacuum are {ia + ai), they satisfy 

@(ai -a j) 

(4.1) 

(3.8a) 

.th Subtracting the 1 equation (3.8a) from the (i - I& we get 

cm0 cash ai)(Aoi)= ‘f +i 1 [@(ai -aj) - 4daim1 -a j) 1 
j 

mocosh a = 2rrpkta) + f ‘7 (i&Y) +o(,i -a j) 

A 
mocosh a = 2apIa) + ./ da’p(a’) & @(a-a’) . (4.2) 

-A 

Here a rapidity cutoff A has been introduced. The Dirac sea is filled up to 

rapidities of + A. This equation can be solved in the limit A + m, yielding 

p(a) = m o (&y&c) e(‘-y)* cash ya (4.3) 

where y satisfies 

- 
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sin(n-2u)y = -I 
sin ry 

n Possible values of y are 6, -, etc. n-!J In free field theory, we know 

p,(cc) = mocosh a. The only choice for Y yielding this in the limit u+ 1/2 is 

R 
Y=Tp’ This choice does not cross any other choice for !.I > II /3. In particular, it 

is the only value of y that develops continuously from the free field value for 

II > n/2, the region of interest for the study of bound states. At !J :x/3, the 

n solution y = TI /2~ crosses the choice - . 
n-u 

For u’ TT /3, the simple cutoff used in 

(4.2) must be modified. This problem is best understood by comparison with the 

eight-vertex model (see Sec. V). For the remainder of this Section we will assume 

I-1 > a/3. 

The bare mass, m. appears multiplied by a cutoff dependent factor e (I-VU . 

In the remainder of this section we will study the excitation spectrum and find that 

the combination moe(l-Y)h is finite and proportional to the physical mass in the 

limit A-+m, Thus, dc3 is completely cutoff independent, and, in fact, of the same 

form as p,(a) ( u= n/2). The only differences are the appearance of a 

renormalized mass and a rapidity resealing (CL + ya ). 

We now turn to computing the spectral properties of n-strings. The vacuum 

distribution will be affected by the presence of an n string. First of all, we must 

indude the holes an n string requires. Recall that in the neutral charge sector with 

I! f Ir’ n strings with n = r + 2 or r + I need n - 2 holes at in + CL s, and two others 

somewhere in the vacuum distribution. The n-strings with n ‘r need n holes at 

in+a 
5’ 

In addition to introducing holes along the in line, the presence of an n 

string shifts the remaining ai of the vacuum distribution. This results from the 

fact that the new Dirac sea satisfies PBC’s with extra phase shifts from the n- 

string. The addition of a finite number of terms each 0(1/L) is expected to shift 

- 



.-21- FERMILAB-Pub-78/84-THY 

the ai’s of the undisturbed Dirac sea by 0(1/L). Since the number of modes in the 

sea is O(L), this gives a contribution to the energy which is finite as L +a3. We will 

refer to this effect as the “backflow” of the Dirac sea. It must be taken into 

account if we are to compute the energies of states properly. 

Consder an n-string whose real coordinate is us. The perturbed Dirac sea has 

modes at {ia + ?$ }, where zi are real. There are n holes at 6 I”’ = is + al, 

(h) 
52 = 1 ll+ a2, and 13~1 = . . . q 13:) = in + as. For n zr, a, = a2 q as. The 

undisturbed vacuum has particles of rapidity {in + ai 1. The PBC’s for the sea 

modes in an n string state are 

) (4.3) 

where a(n) IS given by Eq. (3.7). An integral equation describing the backflow is 

obtained by subtracting the PBC’s for the undisturbed Dirac sea from those of the 

excited state, Eq. (4.3). If iii’ = ni, we subtract the (i’) th Eq. (4.31 from the (ilth Eq. 

(3.8a). This is shown in Fig. 6. Let w(cri) = (ai’- ailL. (Gil - ai) is expected to be 

0(1/L), so w(a) should have a finite limit. Then, 

m. cash CL. 1 

( mocosh a) da) = I dcr’p(a’l I w(a) - t&a’) 1 $o $(a - a’) + Q,(cr, a,) 

-(n-2)Q(a-as)- @(a-al)- da- aJ 

Using Eq. (4.21, we finally obtain 
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21rF(a) = Q,(cY, 01~) - (n - 2)$(c( - as) - $(a - a,) - @(CL- a,) 

- i dcc’F(a’) +a $(a - a’) (4.4) 

Here, the limits of integration can be extended to infinity since the integral is 

found to be convergent. Now we have a simple convolution equation which can be 

solved via Fourier transformation. Letting 

F(y) = i da eSiay F(a) 

we find that 

i(Y; as9 al ,a 2) 
F(y) = 

ml + 2(Y)) 

(4.5) 

(4.6) 

where 

[(a; as,al,a2) = On(a,as)-(n-2)~(a-as)-~(a-al)-~(”-a2) (4.7) 

and NY; as,a ,,a2 ) is its Fourier transform. AISO, 

k(y) = & I da emiay +a $(a) = si:$~v~2u’y - (4.8) 

F(a) can be found by inverting the Fourier transform (4.6). Using this result, we 

can compute the energy and momentum En and Pn of an n-string state relative to 

the ground state. The energy is obtained by subtracting eigenvalues of the form 

(2.20), giving 

- 
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En = 1 m coshB!S)- 1 mcoshB!h] + I[ mcoshiS.-m coshB.] 
string ’ 1 holes ’ I sea 0 I 0 I 

=m 0 Jg cash $) + m. [ (n - 2)cosh as + cash a I + cash a2 I + B n (4.9a) 

where ,(s’ and bJh) 

$ _ 
I are the positions of the n-string modes and holes respectively, 

i.e. 
% - a,+iil(lr-u] with ¶, = (n - l], (n - 3) ,..., -(n - I), 

&. 

By) = in + al, 

(h) -ur+a2, B3 =...=B O-d= . 
n III + as with CYL = a2 = a2, if n < r. Similarly, the 

momentum of an excitation is 

pn= 1 m sinh &‘) - 
string ’ I 1 m sinh B!h] 

holes ’ I 

+SP 
m. sinh Ei - m, sinh B, ] (4.9b) 

The first two terms in (4.9a) will be called the “bare” energy of the n-string and 

holes. The last term constitutes the backflow energy of the Dirac sea. For L + 03 

it can be written 

Bn = m. J: [ cash Bi - cash BiJ 
sea 

= -m o [~dctF(&inh CL (4.10) 

where we have used Bi = i s+ ai, oi real. The backflow momentum may also be 

written as an integral over F(a). Note that these integrals require a cutoff, which 

will ultimately be absorbed into a renormalized mass. As in the ground state 

integral equation, a sharp cutoff in rapidity is suggested by comparison with the 8- 

vertex model (see Section V). 
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To compute the backflow integrals, we will use Eq. (4.6) directly by 

introducing the Fourier transform F”(y) into (4.101 and doing the a integral first. 

The Fourier transforms of 9, and Q which appear in Eq. (4.61 are given by 

S,(y, as) = $J e 
iasy 1 

Sinh C 
sinh[(n-l)n-(n+IIulytsinh(n-l)(n-uly (4.IIa) 

- (n - Zlsinh ny 1 n = r+l, r+2 

2* ‘%Y = 7e I 
lY sinh try - [sinh(n+ll(n-uly+sinh(n-ll(n-u)y-nsinhnyl n <r 

74.11bl 

$Y, a,) = Z$ e 
ialy 

& sinh h - Zu)y . (4.llc) 

Now the backflow energy can be written as the difference of two terms 

B? = -m+ I* do e”F(a) 
-A 

. 

Carrying out the a integration, this gives 

B+ ; -m+ I* doe” j, g eioy 
3Y; as’ aI’ a,) 

-A Zrr(l + r;(y))- 

m0 A =_- r 
ze - 

sinh TI y I&J 
Zsinh(n-ulycoshz 2n ’ (4.12) 

There is also a term proportional to e -A which vanishes in the limit A + m. The y 

integral may now be done by contour integration, closing the contour in the upper 

half plane. For u > n/3, the leading poles are at y = i and y =c 
2u * 

Other poles give 

-A contributions which are down by positive powersof e . It is found that the 
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contribution of the y = i pole (and y = -i pole from B ) exactly cancels the bare 

energy. The exact expression for the energy comes entirely from the y = +c poles. 
2u 

The y = +i poles contribute to the total backflow energy 

Bn (y = *i) = - m, cash CL~ Sins~~u- ‘) + (n - 2)cosh as + cash al + cash CL 2 1 . (4.13) 

Eq. (4.13) holds for all n-strings. It is not hard to add the energies of the modes of 

an n string. The bare energy thus obtained is 

m. Ig cash B i(s) = m. sin;ru- p) cash as . (4.14) 

From (4.131, (4.14), and (4.9a) it is seen that the y = ? i poles exactly cancel the 

bare energy of the n-string and holes. One may obtain similar results for the 

momentum. Now we compute the contribution to the backflow energy from the 

poles at Y = kFp E ?iY. A straightforward evaluation yields, for n = r + 1 or r + 2, 

m eJul-Y) 
B,(y=‘iy) = + ‘,- 

nt Y) 
tan ry [ cash ycc I + cash ya2 1 . 

Now define the renormalized mass 

m = mom ,Nl-Y) 
. 

(4.15) 

(Note that m > 0 since we have assumed p > n/3.) The energy of an n-string with 

n=r+20rr+1,andholesatin+crlandin+cr 2 is then given by 

E = m(cosh ycrl + coshya2) . (4.16a) 
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It is worth remarking that this expression is independent of as. We interpret 

(4.16a) as the energy of an unbound fermion-antifermion pair. A similar 

computation shows 

P = m(sinh ycrl + sinh ya 2) 

For n 2 r, we know o, =o 2 = as. From (4.1 lb) we obtain 

E = m coshya 
S t 

sin i(r + I)(n - u)yl+sin [(n - l)(n - p)yl 
sin ny sin *y -n+n 

f 

= m cash ya sin [n(n - u)y 1 cos Ita -11 )yl 
S sin 1~y 

which gives 

coshyas 

sinh yo, . 

(4.16b) 

(4.17a) 

(4.17b) 

This is precisely the bound state spectrum of the sine-Gordon theory computed in 

the WKB approximation by Dashen, Hasslacher and Neveu. 12 The parameter p is 

related to the g used in Ref. 3 by 

p=; ( ) 2u 
g+* (4.18) 

In general terms, the effect of the Dirac sea has again been to renormalize the 

mass and rescale the rapidity. The renormalized mass in Eq. (4.15) has precisely 

the cutoff dependence found in the coefficient of the vacuum density of states 

Eq. (4.3). Furthermore, the rapidity for &se excitations is resealed by the same 

quantity as the rapidity for the distribution of the Dirac sea. 
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V. THE hlASSIVE THIRRING MODEL AND THE EIGHT-VERTEX 
LATTICE NEAR THE CRITICAL POINT 

In the preceding sections we have described an exact field theoretic 

treatment of the massive Thirring model. The method begins with a diagonali- 

zation of the Hamiltonian (2.1) in an unphysical Hilbert space built upon the state 

1 O> defined by $1(x) 10 > = $2(x) 10 > = 0. The physical vacuum is then described by 

a Bethe wave function with all negative energy modes filled. A consistent 

formulation of this step requires the introduction of a rapidity cutoff A. The 

structure of the excitation spectrum is delineated by the periodic boundary 

conditions, which also serve as the essential tool for computing physical quantities 

such as the energy and momentum of an excitation. To gain a broader perspective 

on these results, it is of great interest to explore the connection originally 

discussed by Luther6 which relates the massive Thirring model to a continuum limit 

of the XYZ spin chain and thus to the critical behavior of the Baxter S-vertex 

lattice. In fact, Luther’s analysis and the lattice techniques of Baxter4 and of 

Johnson, Krinsky and McCoy’ provided much of the inspiration for the methods 

described in this paper. A comparison of these models provides an instructive 

example of the relationship between lattice statistics and quantum field theory and 

also allays possible suspicions about the legitimacy of the rapidity cutoff procedure 

used in section IV to regularize the divergence associated with mass renormali- 

zation. The rapidity cutoff parameter A is found to be closely related to the 

elliptic modulus which measures the temperature interval (T - T,) in Baxter’s 

parametrization of the S-vertex model. The limit A + m in the field theory can 

then be associated with the approach to the critical point in the lattice problem. 

The main intent of this section is to relate the periodic boundary conditions 

for the massive Thirring model, eq. (3.3), and the subsequent spectral calculations 

to the developments which follow from Baxter’s fundamental equation for the 

- 
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eigenvalues of the &vertex model transfer matrix. We begin with a brief 

discussion of methods and results for the g-vertex model and XYZ spin chain, 

emphasizing only those aspects which relate directly to the massive Thirring model. 

The &vertex model is formulated on a square lattice with toroidal boundary 

conditions and horizontal and vertical bonds connecting adjacent lattice sites 

(vertices). An arrow is placed on each bond, with the only allowed configurations 

having an even number of arrows pointing into each vertex. This limits the allowed 

vertex configurations to the eight shown in Fig. 7 . Associating energies Ej, 

j=l ,...,8 with these vertices, the symmetric S-vertex model is defined by the four 

vertex weights 

w1 =w2 = a w3 = u4 = b 

w5 =w6 = c w7 = kJ8 = d 

where 

i*. = e 
-BEj 

I 

(5.1) 

(5.2) 

Particularly useful combinations of these weights are 

w1 = %(c + d) W 2 = y2(c - d) 

w3 = #(a - b) w4 = %(a + b) . (5.3) 

By standard manipulations, the problem of calculating the partition function 

can be reduced to that of finding the largest eigenvalue of the transfer matrix T -* 
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For a lattice with N sites per row, r is a 2Nx ZN matrix labeled by the 

configurations of two adjacent rows of vertical arrows. It is given by the product 

of vertex weights in a row summed over horizontal arrow configurations, 

specifically 

T 
ala’ = Tr { @al, aI’)R_(a2, a2’)...R_bN, a,‘) } . (5.4) 

Here R(o, ~1’) is a 2 x2 matrix representing an elementary vertex. - It is 

conveniently written by introducing the Pauli matrices u , o ‘, 03, and the unit 1 

4 matrix0 , 

(5.5) 

The partition function is then given by 

2 q TrI 
M 

, (5.6) 

where M is the number of rows. The partition function has important symmetry 

properties which may be derived from the expressions (5.4)-(5.6). Considering Z as 

a function of the four w’s, one finds the following symmetries: 

Z(wl, W2’ w3, w,) = Z(kWi, kWj, ?Wk, ‘W&j (5.7) 

where i,j,k, R is any permutation of 1,2,3,4. Included in (5.7) is the self-duality 

property which relates eight-vertex models below Tc to eight-vertex models above 

T c. This is the generalization of the famous Kramers-Wannier symmetry of the 

two-dimensional Ising model. 

- 
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The method devised by Baxter for obtaining the eigenvalues of 1 is facilitated 

by parametrizing the vertex weights in terms of elliptic functions. This introduces 

parametersn, v, and k which determine the relative size of the vertex weights by 

a : b : c : d = sn(v+n,k) : sn(v-n,k) : sn(Zn,k) : k sn(Zn,k)sn(v-n,k)sn(v+q,k) . (5.8) 

For discussing phase transitions it is also convenient to use a related set of 

parameters 5, V, and il, given by 

V = - i(l + k) v 

5 = - i(l + k)n 

%=1-k 
l+k 

(5.9a) 

(5.9b) 

(5.9c) 

Using the properties of elliptic functions under the change of modulus (5.9c),‘* the 

ratios of w’s may be obtained from (5.3) and (5.8), giving 

w1 2rw3 :w (5.10) 

Baxter showed that the parameter V plays a special role. Any two transfer 

matrices I(V) and r(V’) with the same 5 and 9. will commute for arbitrary values of 

V and V’. This means that for fixed 5 and 9., the matrix r(V) is diagonalized by a 

set of eigenvectors which are independent of V. In a related development, Baxter 

obtained a precise relationship between the eight-vertex model transfer matrix and 

the HamiltonIan of the XYZ spin chain. The latter is given by 

- 
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3 = -h “i’ I Jxc7”‘~~+l + Jyo”*o”Z+l + Jzo”3i1;+l } 
n=l (5.11) 

where &+I 3,‘. If the constants Jx, Jy, and J, are parametrized in terms of i 

and L by 

J ,:J y: J, = cn(2S,@:dn(2<:9.): 1 , (5.12) 

then the Hamiltonian (5.11) is obtained from the transfer matrix (5.4) by the 

formula 

&?= - Jz sn(25, 9,) - AIn I(V) 1 
v=< 

-%N[cn(2S,~)+dn(2S,~)-ll/sn(2~,11) .(5.13) 
I 

In order to restrict the range of parameters we wish to consider, let us recall 

the relationship between the Hamiltonian (5.11) and that of the massive Thirring 

model. 6 The essential connection is established by converting spin operators 

? 0 5 Yz(o’ +io*) into fermion creation and annihilation operators via a Jordan- 

Wigner transformation. Under this transformation, the Jx and Jy terms in (5.11) 

produce the kinetic energy and mass terms for the fermion Hamiltonian, while the 

Jz term becomes a four-fermion interaction. In order for this particular 

identification of spin and fermion operators to lead to a sensible quantum field 

theory, Jz must be smaller in magnitude than Jx and J 
YY 

with J, and Jy becoming 

equal in the continuum (scaling) limit. This can be accomplished in Eq. (5.12) by 

choosing 5 to be pure imaginary. Defining 

II’ = (1 - 2)” 

(5.14a) 

(5.14b) 
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and using identities involving elliptic functions of imaginary argument, 19 (5.12) can 

be rewritten 

J x : Jy : 3, = 1 : dn(2 C’, P, ‘) : cn(2 C,‘, R ‘) 

If we choose 5’ real and 0 < .k’ < 1, we find 

Jx ’ Jy ’ 1 J, 1 

(5.12’) 

(5.15) 

with J,/Jy + I as R’ + 0. 

By similar manipulations, the ratio of w’s in the corresponding eight vertex 

model becomes 

w1 : vi2 : w3 : vi4 = I:$&-+ :$$p&g (5. LO’) 

where V’ = - iv. The massive Thirring model is associated with an eight-vertex 

model near the critical point. If we restrict our consideration to V’, 5’ real and in 

the region 

IV’ 1 < 5’ < KQ’ (5.16) 

with 

0 < al < 1 

then we find 
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w3 ’ w* ’ WI > Iw41 (5.17) 

For any arrangement of w’s, a phase transition takes place when, and only when, 

the middle two w’s cross.4 Thus, in the region (5.161, the critical point is 

approached when w * w 2 1, i.e. R’+ 0. The region (5.17) differs from the 

“fundamental region” considered in Refs. 4 and 5. They are related by a dual 

transformation which interchanges w, and w3. 

The fundamental equation upon which eight-vertex model calculations are 

based is Baxter’s4 relation for the eigenvalues T(v) of the transfer matrix. These 

eigenvalues are found to satisfy the equation 

T(v)Q(v) = ~$(v+r3Q(v-2r3 + $dv-n7)Q(v+2d (5.18) 

where*’ 

$6) = [“pH(v)lN (5.19a) 

Q(v) = “n H(v-vj) 
j-1 

(5.19b) 

and H(v) is a Jacobi eta function of modulus a’. Here the vj% may be associated 

with the set of occupied modes in a particular eigenstate. E is a normalization 

constant which depends on the elliptic modulus but not on n or v. It need not be 

specified further for the purposes of our discussion. 

The calculation of an eigenvalue T(v) from Eq. (5.18) proceeds in two stages. 

The first step is to determine the allowed values of v.. To do this note that 
J 

H(O) = 0 and hence Q(vi) 5 0, i = l,..., n. Evaluating (5.18) at each vi, the left-hand 

side vanishes and we obtain a set of n equations for the v.‘s, 
I 

- 
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(5.20) 

It will be shown that, in the appropriate limit, Eq. (5.20) reduces to the periodic 

boundary conditions for the massive Thirring model, Eq. (3.2). The second step in 

computing T(v) is to evaluate (5.19b) using the vj’s determined from (5.20) and then 

obtain T(v) from (5.18). The corresponding eigenvalue of the XYZ Hamiitonian is 

given by (5.13). This will reduce to a mode sum identical to those which arise as 

eigenvaiues of the massive Thirring model Hamiitonian. 

To understand the connection between (5.20) and the periodic boundary 

conditions of the Thirring model, we must study the function 

F,(v) = in [::I (5.21) 

where the H’s are of modulus il’. Since we are interested in the behavior of Fm(v) 

as II’ e 0, it is convenient to consider its expansion in powers of the nome q, where 

q = exp i-nKQ/~;l (5.22) 

Note that as J,’ + 0, KR’ + s/2, Kf, + In (4/k’) + -, and hence 

Equation (5.21) can be expanded in powers of q, 19 

(5.23) 

I I 

Fm(v) = In 
c - 

sin(v + mn) 
sin(v - m?J] + 4 jl 5 sin 2n;sin 2nm; (5.24a) 

where 
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(5.2413 

(5.24~) 

The right-hand side of Eq. (5.20) reduces straightforwardly to the exponenti- 

ated sum of phase shifts on the right-hand side of Eq. (3.2). The eight-vertex 

model parameters v and n are related to rapidity and coupling constant 

(respectively) in the massive Thirring model. Making the replacement 

‘Vi -v j) + -; (Bi - “j) (5.25a) 

(5.25b) 

and using (5.23) we find, as II’ + 0, 

F2(vi - vj) + In 
sinh yZ( Bi - f3 - 2iu) 

-sinh Yz(Bi - Bj + 2iu) I (5.26) 

which is precisely the two-body phase shift of the massive Thirring model, Eq. 

(2.15~). 

The reduction of the left-hand side of (5.20) to the corresponding Thirring 

model expression is somewhat more delicate. This results from the fact that the 

approprrate limit not only takes 9.’ + 0, but simultaneously vi + im. We will find 

that the proper replacement is 

v. + -i Bi + iKQ 1 (5.27) 

- 
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with i3i = rapidity remaining finite in the continuum limit. (Note that K + m as 
a 

!?,I+ 0.) Using (5.27), the desired result follows by keeping both the logarithmic 

term and the n = 1 term in the sum in Eq. (5.24a), which reduces to 

Fl(v,) + -i(n -u) - 2ie 
2iv sin 2n + 2iq 2 e -2ivsin 2n 

i!J.‘* + -i(n-u)-- 16 sin u sinh 13~ (5.28) 

The first term in (5.28) represents an overall shift in the origin of momentum space 

associated with the fact that the “Fermi surface” of the occupied modes in the 

ground state is at (TI - u). The second term reproduces the Thirring model exponent 

on the left-hand side of Eq. :3.2), specifically, 

NF1(vi) + -iL(kF + m,sinh B,) (5.29) 

Here, 

kF = (n-u)/a (5.30a) 

2 
m 

0 
= & sin u , (5.30b) 

where a = L/N is the lattice spacing. This dependence of the bare mass on the 

vanishing elliptic modulus and on the lattice spacing may also be obtained directly 

from the XYZ Hamiltonian. The constant term kF in (5.29) has no effect on the 

integral equations, which are derived by considering differences of PBC’s. 
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Using the prescription (5.27) we can also consider the contribution of an 

occupied mode to the energy of a spin chain in the continuum limit. It can be 

shown that,4’5 when 0 < Im v < SK’ k, the first term on the right-hand side of (5.18) 

dominates the second term exponentially for large N. Thus, after determining the 

vi’s, we may compute the eigenvaiue of the transfer matrix from 

T(v) = @(v + T,)+.p (5.31) 

in the limit N-f ~. The energy E of the corresponding spin chain state is found 

from (5.13). Changing to real parameters, this gives 

E = K(l + 2)Jxsn(25’,fi’) ] $ ln rQ*] /I v=n+ (const.) (5.32) 

where (const.) includes those terms which are independent of the eigenstate being 

considered. From (5.32) and (5.19b) it is seen that the energy can be written as a 

sum over occupied modes, where the contribution of mode j is given by 

E j = - YdI + k)Jxsn(25’, 8’) & Fl(v - vj -n ) 1 (5.33) 
v=q 

Using (5.29) and letting 

Jx= ! 
2a sin u I 

Eq. (5.33) becomes, in the limit 9.’ + 0, 

(5.34) 

cj = mocoshBj 

- 

(5.35) 
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The choice (5.34), which fixes the overall normalization of the spin chain 

Hamiltonian, may be better understood by considering two special cases, the XY 

chain (Jz = 0, free fermions) and the XXZ(Jx = Jy, massless Thirring model). For 

the XY case, the energy of a single mode is 21 

cxy = $y [ Y2 + (1 -Y *)cos*(ka + s/2) 1 ’ (5.36) 

where Y = (Jy - Jx) and the momentum k is measured from the Fermi surface at 

s/2a. In the continuum limit y +O, a + 0, y/a = m. fixed, this becomes 

EXY + 2aJ 
X 

[k* + m 0 *I ’ (5.37) 

The proper relation between energy and momentum leads to the choice Jx = 1/(2a). 

This is just (5.34) for u = r/2. In the XXZ chain, the mode energy is17 

% 
xz = -~J~[COSP + cos(ka +s -UN 

(again measuring momentum from the Fermi surface at (n - u)/a). The continuum 

limit in this case is just a +O, whereupon 

cXxz + (2a3,sin u) x k . (5.38) 

Again we are led to the choice (5.34) by requiring the proper energy-momentum 

relationship for a massless particle. Finally, we note that, as 1’ + 0, 

Jz = cn(2I;‘,9.‘)Jx + & cot !.I (5.39) 



-39- FERMILAB-Pub-78/X4-THY 

which accounts for our choice Kg 
0 

= -cot p in the continuum theory, Eq. (2.15b). 

Having established the connection between the eight-vertex model formalism 

near the critical point and the corresponding results for the massive Thirring 

model, we can now gain a better perspective on the rapidity cutoff procedure used 

in Section IV. The limits * A on rapidity integrations (mode sums) which were 

imposed somewhat artificially in the massive Thirring model arise naturally in the 

lattice theory as Brillouin zone boundaries. To see this, we first note that the 

quasiperiodicity of the Jacobi eta function of modulus C, 

H(v + 2iKk) = - q-’ exp 6 inv /K ,$H(v) , 

implies that the functions defined by (5.21) have the property 

Fm(v + 2iK,) = -(Zimnn/K d) + Fm(v) 

(5.40) 

(5.41) 

If we now consider the mode energy (5.33) as a function of the rapidity B which is 

related to v by (5.27), it is seen to be periodic 

E(B - 2KR) = &3 + 2K& (5.42) 

The ground state of the XYZ chain is obtained by filling all modes within a single 

period along the line B = a + ir, which we can choose to be 

-2Ka < CL < 2KQ (5.43) 

Thus, the rapidity cutoff is related to the elliptic modulus by A ++ 2Kll 

- 
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The difficulties which were encountered in the continuum theory for PC n/3 

can be understood in the lattice formalism as resulting from an illegitimate 

interchange between the .Q.‘+ 0 limit and a mode summation. For example, 

consider the integrand in the expressions for the backflow energy, eq. (4.12). In 

addition to %y), there is a factor [ I + K(y)1 -I and a factor coming from the cutoff 

Fourier transform of sinh a. The difficulty for p <a/3 stems from the fact that 

the poles in I/sinh[(*- u)yl cross the y = in/2p pole of [cash p yl-’ and become 

the dominant singularities. In the lattice theory this does not happen. Instead of a 

Fourier transform of sinh a, the integrand in this case contains a Fourier transform 

of the full F, function (c-f. eq. (5.29)). This introduces a factor 

sinh (a - u)y/sinh 9 which cancels the [ sinh(n - u)yl -I. As a result, the pole at 

y = in/2 u always dominates. It seems that the continuum rapidity cutoff procedure 

used in Sec. IV is inadequate for the range of coupling 0 < 11 < n/3 (which 

corresponds to -IT/~ <g < -e/4 in the notation of Ref. 3 ). For this range a more 

sophisitcated cutoff (such as putting the theory on a lattice) is required. It may be 

that, by paying closer attention to the infinite set of conserved currents in the 

massive Thirring model, a consistent cutoff scheme could be devised for u< n/3 

without resort to a lattice. Since for p < n/3, certain anomalous dimensions 

become large (for instance, y = (3/2) at u = n/3), there may be other operators 

which must be included in the Hamiltonian in order to render the A + = limit 

physically acceptable. It is likely that a careful analysis of the criticial limit of 

the operators of the lattice theory would show the presence of such effects. 

Indeed, such effects are known to be present in this mode1.22 We believe that a 

thorough resolution of this problem requires the calculation of Green’s functions. 

For this, an operator formulation of Bethels ansatz would be desirable. In any case 

it is worth re-emphasizing that, for a broad range of coupling n/3 < u < TI 
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(- d4 < g < +a), the continuum methods presented in Sets. II-IV provide a 

consistent and exact treatment of the theory which agrees with the appropriate 

limit of the lattice theory and with other known results for the massive Thirring 

model. This encourages the application of such methods to other theories which 

are known or suspected to have an infinite number of conservation laws but for 

which a soluble lattice theory is not available. 
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APPENDIX 

In section II, we demonstrated that a certain Bethe ansatz state in the N = 2 

sector was an eigenstate of H. In this appendix, we will carry out the 

demonstration for a general state labeled by rapidities. Dealing with rapidity 

rather than momentum allows us to consolidate all possible cases of “I” and “2” 

particles. In terms of rapidity, we have 

YY(x,a) = 
( 

efia G,(x) + em’ a$2(x) 
1 

. (A.1) 

This is obtained from Eq. (2.8), tan 20 k = (ma/k), and the definition of rapidity. 

The eigenstate is then 

Ial... a,,> = .f dxl...dxnX(xl...xn).?I yt(xi, @IO> 
1=1 

(A.2) 

with 

x(x1... x,) = e 
im, C xisinh oi 

I 11 
1 <i< j <n 

1 + iX(ai, aj)c(xi - xj) L4.3) 
- - 

and 

A(ai, ai) = - fig0 tanh fi(ai - aj) . (A.4) 

First, we apply the kinetic term in the Hamiltonian, commuting $:v Ji. L 

through the product of Yt’s to 10 >. The result after integrating by parts is 



-43- FERMILAB-Pub-78/84-THY 

Hk 1 u,... an> = ,r dx ~...dx, ,y (43 i~) Yt (x,a I)... C 
Yia. 

I=1 
bJ,(XiL 

e -hai $;(X$) . . . Yt(Xnan)] IO > 

The mass term gives 

Hm 1 aI... an’ = .f dxl...dxnx(x) ill c Yt(xlal)... 
-%ai + 

e Jl,(xi) i 

e 
Kai + 

I,) . . . Y+Cxnan) 1 IO > 

(4.5) 

At A= 0, we have -iVix = (m,sinh a&, so we combine appropriate terms in (A-5) 

and (A.6) via 

m eHa t $ I 

= m. cash a Y+ (x, ar) (ii.7) 

As in the two-body case, we take d(x)&(x) q 0 to compute the derivative of X. 

Then, we obtain 

n 
-i Vix = mosinhai * 2 

i={ X(ai 
, 

ai)6(xi 
- 

xi) 1 x . 
0 0 0 0 

Go 

Putting this in (A.5) and (A.6) and using (A.7), we obtain 

(HK + HM) 1 aI...an> = 1 
i 

mocosh ai Ia . ..an>+ jR> 1 (~.8) 

where 
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IR > = 2 ; dxl...dxnX(x) L’ 1 X(ai,a jN(xi - xj) [J(u,a,)... 
i j,fi 

( 
Y2a. 

e I t $, (xi) - e 
4ai + 

J12(Xi) ) . . . Y+(x,a& 3 IO > 

= 4 I dxI”.dxn X(x) : ,i X(ai, aj)6(xi - ~~)(-)~-j+’ c(j-ikosh K(ai -a j) 

$:(xi)d(Xi) [Y’s except for i,j] IO > 

The interaction term gives 

Hg Ial... > = 2g, i dxi...dxnX(x) { /$ 6(xi - xj)E(j-i)(-)i-jf’sinh Y&z i - aj) 

$:(Xi)$:(xi) [Y’s except i,j I 1 0 > u 

Since h is given by Eq. (A.4), this cancels I R>, and thus 

H la ,... an> = 1 mocoshai 
i 

(A.!% 

- 
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Fig. 1: 

Fig. 2: 

Fig. 3: 

Fig. 4: 

Fig. 5: 

Fig. 6: 

Fig. 7: 

FIGURE CAPTIONS 

Filled modes in the Dirac sea for a range of couplings. 

Graphical solution of periodic boundary conditions in the 

presence of a mode at CL q 0. 

Allowed n-strings for f n < v < z TI . 

Dirac sea in the presence of a 7-string. 

(a) Dirac sea with a l-string for u <r /2; note that two CL’S are 

labeled by no. 

(b) Dirac sea with a l-string for u > TI /2; note that the former 

l-string is now a 3-string with one hole. 

Scheme for subtracting ground state from excited state mode 

sums. Dashed lines indicate which ground state modes are to 

be subtracted from sea modes in the excited state. Far from 

the string, the x’s and dots line up. 

Allowed vertices in the eight-vertex model. 

- 



- 



0 
r - c II .- 

-7: c 
2: 

: 
: 

i . 
t 

.* 
: I\ / 
. 

IF =’ 

I \I . 

: - : 
l II 

c1 

0 



X X 

x X’ 

X 

X 

X 

E? .- x L 
-G 
KP 

0, lz .- L 
ti 
M 

I 
c” .- 2 



X 

-x 
+ 

E 
a x 

X 

X 

X 



- 

z 
s 
gX 

T 
X 

ox c 
x Lx 
T--- ox r 

X 
X 

T 
%J 
'i a. Q) 

z 
xf z .c - .t 3 

i? .- L 
z 
to 

-ix \u 
I? x I 

&J 
=I! xz h 

0 ” 

=X ii? .- T 
c? x 

I- - 
5 

I 

i 

X 

X 
I 



l ‘k 

l x 
/ 

/ 

+,’ ,‘c 

f / 
l I x 

/ / 
8’ I$ 

I/ 
.I 1 x 

I/ 
/ / 

l 1 
/ 

./ 

x x x x 



2 3 5 6 7 

Fig. 7 


